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ABSTRACT 

2 5 6 J 7  
The use  of error-correcting codes on a white Gaus- 

sian channel is considered a s  the signal-to-noise ratio 
approaches zero. Two criteria of performance are used: 
the expected number of information bits i n  error and the 
probability of word error. I t  is shown that if bit-by-bit de- 
tection is used, and if the expected number of b i t s  i n  error 
is to be minimized, then maximum-likelihood decoding 

should be abandoned at low signal-to-noise ratios. In fact, 

coding should be abandoned altogether a t  low signal-to- 
noise ratios i n  favor of longer integration time per bit. I f  
word error probability is to be minimized, then error- 
correcting codes using bit-by-bit detection hardly yield any 
gain, and usually result i n  a loss.  However, orthogonal 
codes using correlation detection give a gain approaching 
3.4 db a s  the length of the code increases without bound. 

&++h 
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1. INTRODUCTION 

In a recent  art icle (Ref. l), Hackett  derived asymptotic e m r  probabili t ies for errorcorrecting codes 

used  on a white Gaussian channel at high signal-to-noise ratio. Another important problem is the behavior of 

error-correcting codes  at low s igna l - t eno i se  ratios, since coding is even more necessary  in such poor en- 

vironments. T h i s  Report der ives  formulas for error probabilities of e r r o r  correcting codes  at signal-to-noise 

ra t ios  approaching zero. The  same formulas a re  derived for orthogonal codes  using correlation detection. 

T h e  quali tative conclusion is that  a t  low signal-to-noise ratios,  the performance of orthogonal codes  far s u r  

p a s s e s  the performance of errorcorrecting codes using bit-by-bit detection. 

Before any ana lys i s  can be performed, i t  i s  necessary to review two definit ions of error probabili t ies 

for binary cndes usad with hit-by-bit detection, since at low gimnl-tn-nnict= -tins, thp twa nmb&i!itips c m  

differ significantly. The discussion will be  concerned mainly with bit  error probabili t ies rather than Word 

error probabili t ies,  s ince systems with differing word length will be compared. Two kinds of bit error 

probability are defined: 

0-- -- ----- r-- 

6 6  1. pw, word-equivalent bit error probability,” 

2. p B ,  expected-equivalent bit error probability.” 6 6  

T h e  definition of p w  is as follows: if a code with k information b i t s  is considered, p w  i s  that  bi t  error 

probability which would result  in the same word error probability, for a k-bit uncoded word, as the word error 

probability with the code actually used. And p B  i s  defined as that bit error probability which resul ts  in the 

s a m e  expected number of information bits i n  error, fork uncoded bi ts ,  as  the expected number in error when 

the code is used. 

k In other words, if p I  i s  the probability of word error when using a given code, 1 - ( 1  - pw) = pl.  

And if s is the expected number of information b i t s  in error when the  code is used, then k p B  = s. 

I 1 
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II. MINIMIZING EXPECTED-EQUIVALENT BIT ERROR PROBABILITY 

Maximum-likelihood decoding, by definition, minimizes pw, not p B .  If the  words h a v e  some signifi- 

cance as words, then minimization of p w  i s  indeed the correct criterion. But if the k information b i t s  in the  

code word have no particular relationship to each other, but ar ise  from unrelated experiments, one would 

consider p B  the correct performance criterion for the system. I t  i s ,  as will be shown below, not t rue that  

maximum-likelihood decoding always minimizes p B .  

The decoding scheme that does  minimize p B  i s  the following procedure. For a given received word, 

a given information bit  i s  decoded as a 0 if the conditional probability that the given symbol i s  a 0, given t h e  

received word, i s  greater than the conditional probability tha t  i t  i s  a 1. T h i s  i s  done independently for each  

information bit; this procedure clearly minimizes the expected number of information b i t s  in error. 

However, th i s  decoding scheme rarely coincides  with maximum-likelihood decoding a t  low signal-to- 

noise  ratios. (One c a s e  i n  which i t  actually coincides  i s  the code i n  which a s ingle  information bit  is re- 

peated n times.) On the other  hand, for high signal-to-noise ra t ios ,  t h i s  bit-by-bit scheme a lways  agrees  

with maximum-likelihood decoding. To  prove this,  observe tha t  the most  l ikely transmitted word, given a 

received word, becomes arbitrarily more l ikely than the next-most-likely transmitted word, a t  sufficiently 

high signal-to-noise ratios.  At low signal-to-noise ratios,  the optimum decoding scheme to minimize p B  for 

many codes  becomes the following: the information b i t s  a r e  accepted a s  correct, thus  ignoring the check 

b i t s  entirely. The asymptotic bit power gain i s  defined a s  the limit, as the signal approaches zero, of the  

number by which the s ignal  must be multiplied when us ing  the code to achieve the same p B  as  one has when 

not us ing  the code. T h i s  power gain i s  then k / n  ( l e s s  than 1) for codes  in which the decoding scheme i s  to 

ignore the check bits. For, in the same word time, i t  would be poss ib le  to transmit the k information b i t s  

uncoded and u s e  ( n / k ) t  time per  symbol, where t was the time used  in the coded case.  Since signal-to-noise 

ratio i s  proportional to symbol integration time, n/k  times as  much signal power would be obtained by 

using “bit  expansion.” 

It i s  conjectured that with any code (l inear or otherwise), except for the trivial “no-coding” code, 

the asymptotic power gain using bit-by-bit detection, even with the optimum bit-by-bit decoding scheme for 

minimizing p B ,  i s  l e s s  than 1. 

2 
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Now the asymptotic bit power gain obtained with maximum-likelihood decoding will be considered. 

We can prove that  for close-packed cyclic codes, such  a s  the Golay (23, 12) code, the asymptotic bit  power 

gain using maximum-likelihood decoding is (k/n) [ 1 - ( 2 y / n ) I  ', where y i s  the average weight of the 

correctable errors. Thus  maximum-likelihood decoding i s  worse by a factor of [l  - ( 2 y / n ) 1  ' than the scheme 

that ignores the check bits. T h e  proof i s  omitted. The  power gain vs. signal-to-noise ratio for the Hamming 

(7, 4) and (127, 120) codes, using maximum-likelihood decoding, i s  graphed in Figs .  1 and 2. I t  may be noted 

that  the crossover point, below which the codes should be abandoned, occurs  at signal-to-noise ra t ios  that 

are to be considered rather high. 

For criterion p B ,  then, the question i s  essentially answered. Ultimately a given code with a n y  de- 

coding scheme whatsoever should be abandoned a s  the signal-to-noise ratio approaches zero. The  time saved 

shoiild t hen  he  used to expand the information bit time by n/k. The effect  of this resul t  i s  that  as the signal- 

to-noise ratio approaches zero, longer and longer codes must b e  used to achieve any gain a t  a l l  with 

criterion p B .  However, the use  of orthogonal (or even better, biorthogonal) codes with correlation detection 

is known to always decrease p B  (Viterbi, Ref. 2). The quoted result ,  coupled with the discussion above, 

shows that orthogonal codes  with correlation detection are the b e s t  choice at low signal-to-noise ra t ios ,  a t  

l e a s t  for criterion p B .  

3 
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111. MINIMIZING WORD-EQUIVALENT BIT ERROR PROBABILITY 

The question of the asymptotic utility of a fixed error-correcting code a t  signal-to-noise ra t ios  

approaching zero i s  completely answered in  the fashion descr ibed above, when the criterion of minimizing 

p B  i s  used.  Henceforth, we t reat  the criterion p W  (used, of course,  with maximum-likelihood decoding). We 

can then revert to word error probabili t ies to compare coding schemes  with the same k.  The  situation i s  not  

as clear-cut with the p v  criterion as i t  was  with the p B  criterion, and some errorcorrect ing c o d e s  actually do  

improve performance even at arbitrarily low signal-to-noise ratios.  Nevertheless ,  orthogonal codes  with 

correlation detection d o  even better, as will  be shown. 

An expression for the probability of correct word reception will be obtained for a given error- 

correcting code used with maximum-likelihood detection, asymptotically val id  a s  the signal-to-noise ratio 

approaches zero. (The c a s e  n = k i s  the no-coding case.)  The d iscuss ion  will  be restr ic ted for simplicity 

to l inear  cycl ic  codes. The parameter tha t  will approach zero i s  the integration time p e r  bit, t ;  the signal-to- 

noise  ratio per  bit i s  proportional to t.  

Define pb) to be the individual uncoded bit error probability for integration time t. T h e  symbols are  

considered to be f l  for t h i s  analysis .  The variance of the integrator output f o r t  = 1 i s  normalized to be 1. 

Then an individual bit i s  received a s  +1 if the integral of the s igna l  over 1 second i s  posit ive;  similarly, -1 

if that  integral  i s  negative. The random variable of the addi t ive noise  component of t h i s  integral  i s  Gaussian 

of mean 0 and variance t .  The  probability of  symbol error, p ( t ) ,  i s  thus the probability that  a Gaussian variable 

of mean 0 and variance t exceeds  1. Thus 

where Q, i s  the cumulative unit  normal distribution function. 

Various coding systems will be compared with the no-coding system. The change in power necessary  

to produce the same word error probability will now be derived. The u s e  of a n  (n, k )  code such tha t  the code 

word occupies  the same time ( k t )  with the code a s  without i t  d e c r e a s e s  the integration time per  symbol in  

the coded case by a factor of k/n, s ince  t h e  time available per  k-bit word i s  the same whether a code i s  used  

6 
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or not. Thus the  symbol error probability using coding, r(t)  say ,  becomes 

The following notation will be  used: 

1 

2 
p ( t )  = - - 6 ,  

1 

2 
dt) = - - E, 

, 
Now suppose there is given a l inear  cycl ic  code C of length n with k information bits,  and l e t  

maximum-likelihood decoding be used. L e t  f 0 5 j 

corrected by the code C. I t  i s  well known that 2 f .  = 2" - k ;  for proof, observe that 2n - k  is the number of 

n, denote the  number of error pat terns  of weight j 
~ i' 

j = o  I 
I cose t s  of C in the space  of binary n-tuples. T h i s  result is used  presently.  
I 

1 T h e  probability that a k-bit uncoded word i s  received correctly, s a y  1 - pwu, i s  given by 

7 
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1 - pwu = [&)Ik. 

T h e  probability that the n-bit coded word i s  decoded correctly us ing  C, s a y  1 - pWc,  i s  given by 

To prove Eq. (41, observe that  the transmitted word i s  the output of the maximum-likelihood receiver if  and  

only if a correctable error pattern h a s  been added to  the transmitted word. Equation (4) merely represents  t h e  

probability of making a correctable error. 

In the following theorem, we sha l l  need the quantity y = y(C), the  “average weight of a correctable 

error”: 

The  parameter y i s  difficult to compute for most  codes,  s i n c e  i t  depends on the weight structure.  In t h e  

example to be given after Theorem 1, y will, however, b e  computed for the class of close-packed s ingle-  

error-correcting binary Hamming Codes. 

Next define G ( t ) ,  the power gain ratio obtained by using C, to be tha t  factor by which the integration 

time p e r  word,-or, equivalently, energy per  bit, in the no-coding case would have to be multiplied in order to 

have the  same probability of correct reception with the u s e  of the code as without the code, when the word 

time is kt. (If G(t )  < 1, there  is a power loss if C i s  used.) Define G [ = G ( C ) I  as G = :ymo G ( t ) ,  the  

limiting power gain a s  the signal-to-noise ratio approaches zero. T h e  following theorem can  then be s ta ted:  

(n  - 2 ~ ) ~  
Theorem 1: G = 

nk 

Before embarking on the proof of Theorem 1, the following corollary will be noted. 

Corollary: The limiting power gain using C e x c e e d s  1 if and only if y / n  < (1/2) ( 1  - m), that  

i s ,  if  and only if the average densi ty  of correctable errors i s  less than half  of 1 minus the square root of the 

information rate  k/n. 

8 
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T h i s  corollary is reasonable,  s ince for given n, k, the better codes  a re  those that correct the greatest  

number of more l ikely error patterns,  i.e., error patterns of small  weight. 

To prove Theorem 1, we f i rs t  show that  

T o  prove Eq. (5), Eq. (4) i s  written as 

n 

I: f j  
j = O  

1 

2n 

- 
j E  (n - j )  E 

+ 
2"-1 2 n - 1  

+ O ( E 2 )  = 

n n nE 2 E  I: f ; - -  
1 "  
- I: f j +  

Using the fac t  that  2 f .  = 2" -k and also the definition of Y, Eq. (5) i s  proved. 
j = o  I 

For the  no-coding case,  we have more simply from Eq. (3) 

To find :\$ G ( t ) ,  a relationship between E and 6 must be  found. As t approaches zero, we have 
2 

from the definit ions of  E and 6 ,  using the power se r i e s  for e-"  '2 and integrating term-by-term, that 

9 
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, [ l  + O(t) I .  

T h u s  Eqs.  (5) and (6) become 

and 

The notation t '  i s  u s e d  in Eq. (8) to indicate  that the integration time k t  p e r  k symbol word when us ing  the 

code is  to be different from the time kt ' p e r  k symbol word when not using the code. 

We now set  1 - pW$) = 1 - p W u ( t ' )  and see what relationship between t and t ' t h i s  implies.  

Equating Eqs.  (7) and (8), one h a s  

(y (n - 2 7 )  + O(t)  = - k(t')' + O b ' ) ,  

or 

or 

(9) 

10 
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Equation (11) means that  G ( t )  = (n - 2yI2/nk + 0 {max [t', ( t ' ) ' ]  }. Since t '  approaches zero as t 

approaches zero, lim G ( t )  = (n - 2 ~ ) ~ / n k ,  which completes the proof of Theorem 1. 
t + O  

The  example of the close-packed singleerror-correcting Hamming codes  (Ref. 3, Sec. 5.1) will now 

be treated. For any m 2 2, these Hamming codes h a v e n  = 2'" - 1, k = 2" - m - 1, and have minimum 

dis tance 3. The correctable error pat terns  are  precisely the zero error pattern and every error pattern of 

weight 1. T h u s  y = ( 1 / P  -k) [(2" -k - 1) 1 + 1 - 01 , and y = 1 - 2-m. For these Hamming codes, 

indexing G by the parameter m, Theorem 1 now gives  Gm = (2" - 3 + 2-m +')2/(2" - 1)(2" - m - 11, 

which converges to 1 as m + m .  For the (7, 4) code, G ,  = 63/64 is less than 1. However, G m  is greater 

than 1 for m 2 5; Gm i nc reases  up to m = 5, then decreases  toward 1. 

Now l e t  u s  consider the Golay (23, 12) triple-error-correcting code (Ref. 3, p. 70). Here n = 23 and 

k = 12; since the code i s  c lose packed, that  is, s ince  the code corrects a l l  errors of weight 5 3 and no 

others, we can compute y as follows: 

y = [I - o + 23 1 + (5). 2 + (2$). 31 2-l' = 2.858 ... 

T h u s  G = (23 - 5.71612 (23 - 1P-l = 1.037, which exceeds  1. Hence there is a gain with the Golay code, 

however extremely slight,  even at arbitrarily low signal-to-noise ratios, if p w  is the criterion. 

In fact ,  we can conclude from resu l t s  in the next Section that G i s  uniformly bounded for a l l  C. 

Moreover, we shal l  see that even with the u s e  of transorthogonal codes  using the optimal detection scheme 

rather than bit-by-bit detection, the asymptotic savings ratio is bounded by 7~ log 2 = 218. A fortiori, then, 

IT log 2 is a bound for all error-correcting codes  using the suboptimal bit-by-bit detection. The  exact  bound 

would be much less .  For example, if k = 1, G approaches 2/77 as  n approaches infinity. We a re  unable to 

obtain a uniform upper bound for errorcorrecting codes bet ter  than 7~ log 2. We can however, pmve the 

following: if the number of errors corrected, e, is less than or equal to  n/32, then G < (15/16)'/ [l - H(1/16)], 

where H is the entropy function to the base  2; thus, G < 4/3. The de ta i l s  are omitted. Similarly, if e 5 n / A ,  

then G < 1 + o(A) for large A. These resul ts  are, however, much too weak. We conjecture, in fact ,  that  

there a re  only finitely many codes with G > 1, besides the c l o s e p a c k e d  Hamming single-errorcorrecting 

codes.  (In fact ,  we only know of the Golay code.) We a l so  conjecture that the value of G for the Hamming code 

with m = 5, G ,  = 1.054, is an absolute upper bound to G for error-correcting codes using bit-by-bit detection. 

We remark that  the truth of the conjecture that there are only finitely many codes  with G 2 1 implies the 

11 
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conjecture that there are only finitely many close-packed codes other than the Hamming codes and the codes  

with k = 1. The proof of this implication is omitted. This completes the analysis of the u s e  of bit-by-bit 

detection and error-correcting codes at arbitrarily low signal-to-noise ratios. 

12 
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IV. ORTHOGONAL CODES 

We now d i s c u s s  orthogonal codes  D using word correlation detection at very low signal-to-noise 

ratios.  Again both cri teria p B  and pR should be considered, but, as in the bit-by-bit case, we  can still 

conclude a priori tha t  under t h e  p B  criterion, there  i s  again a power loss for a fixed orthogonal code as the  

signal-to-noise ratio approaches zero. Relying on formulas developed by Viterbi in Ref. 2, we  consider  

c o d e s  D with n information bi ts ,  thus  with 2" words, of length P. Instead of integration time per  symbol, t, 

i t  is more convenient here  to u s e  the  parameters ,  the (output) signal-to-noise power ratio per  bit. T h e  

relationship i s  s 2 = t .  

In t h i s  notation, Eq. (9) of Ref. 2 becomes 

As s approaches zero, it is known that pwD(s)  approaches 1 - 2-". T h i s  can b e  proved from Eq. (12) by 

integrating by parts,  but a more elegant  proof i s  given by observing that the capacity of this  channel 

approaches zero as s approaches zero. Since D h a s  2" words, 1 - pwD(s) indeed approaches 2-", as 

required. 

We must  now find the coefficient of s in the power s e r i e s  expansion of pvD(s )  around s = 0. 

Equation (12) can be written 

where &u) = d@(u)/ (du)  = (27r)-' exp (- u 2 / 2 )  i s  the unit  normal densi ty  function. Us ing  t h e  binomial 

expansion, 

13 
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W 

T h e  value of 1 - J, - -m  #(v) [@(v)I  2 n - 1  i s  1 - 2-",  as derived previously. Le t t ing  2n - 1 = v, 

we now have 

We therefore need the value of 

for z/ = 1, 2,  ... . We shall determine A ,  exactly for v = 1, 2, 3 ,  4; in addition, an asymptotic expression for 

A ,, valid as  2/ approaches infinity, will be derived. 

To t h i s  end, define for a real,  

g,(a) i s  a continuously differentiable function of a. We require g,(l) = A,; we sha l l  find g,(a) by obtaining 

a differentiai equation and then solving it.  We need g,(a) at only the one point, u = 1, but we can get  g,(a) 

a t  three points in advance, u s e  any one o f  them as a boundary condition, and check our work by see ing  tha t  

the other  two conditions a r e  sat isf ied.  

Now gJ0) = 2 - ( , - % )  i s  immediate; g,(a) i s  in fact  the constant function 2 - % .  L e t  v > 1; then 

2 W lirn g,(m) = a ~ w  g,(.) exis ts ,  and g,(a) = J, = o  (27r)-' exp (- v ) dv. To prove the la t te r  formula, note that  

@ ( a v )  converges uniformly to  the character is t ic  function of the posi t ive a x i s ,  outs ide any interval containing 

0, as a approaches infinity. Thus gv(w)  = 2-3'2, v > 1. Similarly, g,( $1 can a l so  be obtained a priori 

as  ( + ) - I .  

- %  
A first-order differential equation for g,(a) will be obtained in terms of g,-2 [ ( I  + a 2 )  1 for 2/ > 

2; g 2 ( a )  i s  determined separately.  We already know that  g l (a)  = 2-', so that  all g,(a) are  ultimately 

determined in  this  manner. 

14 
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It is e a s y  to justify 

When u = 2, the [@(av)I u - 2  term i s  1, and ( d / d a )  [g2(a)I i s  the integral  of t h e  odd function (277)-’ x 

exp {- v 2  [l  + (a2/2)] 1 v from - m to m; hence  ( d / d d  [g,(a)]  is 0. Therefore g,(a) i s  a constant  

function, and g,(a) = g 2 ( 0 )  = 2 - 3 / 2 .  

For v > 2, integrate Eq. (18) by par ts  us ing  [@(u.u)] v - 2  as the U in  J UdV = UV - J VdU. After 

several  intermediate s t e p s ,  Eq. (18) y ie lds  

2 %  Now define w = v(1 + a ) to prove 

d (v - 1) (u - 2) a 
- g,(a) = (20) 
d a  27T K 

(2  + a 3  (1 + a2) 

Now g,(a) and g,(a) will be determined; the higher g, are not expressible  in c losed  form. For 

I/ = 3, one u s e s  g,(a) = 2-’ and integrates  Eq. (20 ) ,  us ing  g 3 ( 0 )  = 2-”,, to obtain 

P u t t i n g  a = 1 in Eq. (21), one  finally obta ins  

1 
A ,  = 7T ~ ~ arctan fl= 0.215 ... 

U s i n g g 2 ( a )  = 2-,12, one similarly finds 

(22) 



JPL Technical Report No. 32-602 

3 ?4 1 
g 4 ( 4  = arctan (1  + a2, - - 

2 4  4 
and 

3 
A 4  = ( 2.rr ~ arctan 

Since v = 2n - 1, v increases  rapidly in 

fi) - T= 1 0.146 ... 

( 23) 

the fonnulas derived for orthogonal codes. Thus ,  a formula 

for A ,  asymptotic in  v a s  Z, approaches infinity would b e  useful.  Such an expression will now b e  obtained. 

Equation (16) can be integrated by par t s  to obtain 

where the  l imit  must be introduced before integrating by p a r t s  to get from Eq. (25) to  Eq. (26). We have  u s e d  

lim T(l - @ ( T ) )  = 0 and ;em T @ ( T )  = 0. From Eq. (26), us ing  the fac t  that @( - v )  = 1 - @((v), 

we obtain 

T h e  l imit  notation can  now be removed: 

We are  a t  l a s t  prepared to derive an asymptotic expression for A,,. F i r s t  observe that the contribution 

to A ,  from the integral of [ 1 - @ ( u ) ]  v +  i s  arbitrarily small ,  as v approaches infinity, compared with the 

16 
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contribution from 1 - [ @ ( v ) ]  v + l .  T h u s  one has  the asymptotic expression 

Given 8, 0 < 8 < 1, c lose  to 1, fixed, l e t  v be so l a rge  tha t  8 < 1 - ( l / 2 v + 1 ) .  Consider  the set 

of y 2 0 with 1 - [@(y)] v + l  > 8. T h i s  s e t  is an interval to the r i&t  of 0 with the right-hand endpoint 

yo = yo(8; V) given by @(yo) = ( 1  - 8)1/(v+1). A s  v approaches infinity, Ref. 4, p. 106, L e m m a  2, implies  

that  

for 8 fixed. Therefore, an expression for yg can be  obtained by se t t ing  1 - @(yQ) = 1 - (1 - 8)1/(v+1) 

in Eq. (30). Now (1 - 8 ) 1 / ( v + l )  = exp { [ log  (1 - 8 ) ] / ( ~  + 1)) = 1 + [ log  (1  - S ) ] / ( V  + 1) + 
0 { [log ( 1  - 811 /(v + 1)l2, for 8 fixed, a s  v approaches infinity. Thus Eq. (30) implies  

1 
- +(yo) = 

v +  1 Y O  

Taking logs of both s ides  in Eq. (31), one has 

(31) 

Equation (32) becomes 

y6 
- = log  v + O ( l 0 g  yo), 
2 

or 

17 
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yo = d2 log V + O(l0g log V). 

Equation (29) can then b e  written as 

For 6 fixed, the second integral i s  arbitrarily small when compared with the first  integral ,  as v 

approaches infinity, us ing  Eq. (34). T h u s  

(34) 

,2 J y = o  

between [ 1 - (1/2'+1)] yo and 6yo. Since y o  i t se l f  i s  asymptotic to d2 log u for 6 fixed, 

,,'Po (1  - [@(y)]  v + l )  dy i s  asymptotic to d G .  T h u s  

the  required expression. Figure 3 i s  a graph of the exact  A,, vs .  v for 1 5 v 5 7 .  

Equation (15) can now be written a s  

In the uncoded case,  there are n b i t s  which occupy time t each. Using d t ' )  for t h e  probability of symbol 

error in t h i s  system, the probability tha t  a l l  n uncoded symbols a re  received correctly, p k D ( t  say,  i s  

P V D ( t  I f  = 1 - - -__ 1 (k) + O h ' ) .  

2" 2 n - '  

( 39) 

18 
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F i g  3. A vs. v for 1 5 v 5 7 
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Equat ions (38) and (39) a r e  equated to find a relation between t and t ' : 

or 

Thus  the asymptotic power gain as t approaches zero, G,(t) say,  i s  

For n = 1, G I  = 1 / 2  < 1, s o  there i s  a l o s s  if an  orthogonal code i s  used ins tead  of no coding. 

For n = 2, G, = 18 A :  = (9 / r2) (a rc tan  $)2 = .83 < 1. T h e  reason that  there i s  a l o s s  for n = 1 and 

n = 2 i s  that  in these low-dimensional cases, not coding is equivalent to us ing  a biorthogonal code, which is 

better than an orthogonal code. But as n + m, the difference in  power ga ins  us ing  orthogonal a s  opposed to 

biorthogonal codes approaches zero. In addition, for n 3, i t  can be shown that  Gn > 1. 

In Eq. (42), le t t ing n approach infinity, Eq. (37) can  b e  u s e d  to conclude tha t  

lim 
n + m n  

= 7~ log  2 = 2.18 ... 

Thus  there i s  indeed a gain as  n approaches infinity, the gain approaching 3.4 db. T h e s e  resu l t s  are 

summarized in the following theorem. 

Theorem 2: For an  orthogonal code with 2" words u s e d  with correlation detect ion on the white Gauss ian  

channel, with word error probability criterion, the asymptotic power gain Gn i s  given by Gn = { [22(" -l)(2" - 1)21 

/n} A 2  

0.215 ... , A ,  = (3 f i / 4 ~  (arctan $) - 1/(4 fi = 0.1% ... , where A ,  can b e  computed as 

, where A,, v 2 1, i s  given by: A ,  = 1/ f i A 2  = 1 / (2 f i ) ,  A ,  = 1 / ( ~  fi arctan fi= 
2n - 1 
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v - > 3, with g Y (0) = 2-(Y-'). Furthermore, as vapproaches  infinity, A,, 

Gn approaches 7-r log 2 = 2.18 = 3.4 db. With criterion pIy, there is an asymptotic power gain for n 2 3 as 

the signal-to-noise ratio approaches zero. T h i s  asymptotic power gain appmaches  3.4 db from below as 

n approaches infinity. 

(2/v2) d G ,  so that 

T h i s  resul t  can be quickly adapted to the criterion p B ,  using the remark from Ref. 2, Sec. V, that  

in an orthogonal code, given that an error is made, all error pat terns  have the s a m e  probability. T h u s  the 

following theorem holds. 

Theorem 3: With p B  as  the criterion, there i s  a power loss ,  rather than a gain, using orthogonal 

codes with correlation detection as the signal-to-noise ratio approaches zero. T h i s  l o s s  is asymptotic in 

n to (7-r log 2) n2/2'", or in db, asymptotic to  a l o s s  of (2h loglo 3 db, an arbitrarily large loss, proportional 

to n. 

Proof: Since every error pattern is equally likely, given that an error h a s  been made, one finds, as 

in Ref. 2, that  

Substi tuting for pwD in Eq. (38) yields  

s + O(S2). 
1 H 1  

2 !P-' 
p B (s) = - - (k) - A 2 n - 1  

With no coding, on the other hand, 

I s 
p (s) = + O(s2). 

2 6  
B 

(45) 

The  asymptotic power gain is thus 
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[ ~] in - 1' 
( 47) 

T h i s  ratio i s  always less than 1, s ince  A 

using Eq. (37). 

i s  a lways less than 1. The remainder of the theorem i s  completed 

Remark: Correlation detection i s ,  as  before, not the best  way to decode to minimize p B .  The same 

remarks apply here as  in the  bit-by-bit detection case: a given information symbol i s  cal led 0 if 0 i s  the 

most  l ikely symbol in that  posit ion,  given the received waveform. 

In summary, if the criterion i s  p B ,  coding at low signal-to-noise ra t ios  actually c a u s e s  a loss of 

power; if p w  i s  the criterion, bit-by-bit codes  barely help,  but orthogonal codes give a gain of 3.4 db a t  low 

s i  gnal-to-no i s e ratios. 
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